LED发展史
1907年HenryJosephRound 第一次在一块碳化硅里观察到电致发光现象。由于其发出的黄 光太暗,不适合实际应用;更难处在于碳化硅与电致发光不能很好的适应,研究被摒弃了。二十年代晚期Bernhard Gudden和Robert Wichard 在德国使用从锌硫化物与铜中提炼的的 黄磷发光。再一次因发光暗淡而停止。
1936年,GeorgeDestiau出版了一个关于硫化锌粉末发射光的报告。随着电流的应用和广泛 的认识,最终出现了“电致发光”这个术语。二十世纪50年代,英国科学家在电致发光的 实验中使用半导体砷化镓发明了第一个具有现代意义的LED,并于60年代面世。据说在早期的试验中,LED需要放置在液化氮里,更需要进一步的操作与突破以便能高效率的在室温下工作。第一个商用LED仅仅只能发出不可视的红外光,但迅速应用于感应与光电领域。60 年代末,在砷化镓基体上使用磷化物发明了第一个可见的红光LED。磷化镓的改变使得LED更高效、发出的红光更亮,甚至产生出橙色的光。
到70年代中期,磷化镓被使用作为发光光源,随后就发出灰白绿光。LED 采用双层磷化镓蕊片(一个红色另一个是绿色)能够发出黄色光。就在此时,俄国科学家利用金刚砂制造出 发出黄光的LED。尽管它不如欧洲的LED 高效。但在70年代末,它能发出纯绿色的光。
80年代早期到中期对砷化镓磷化铝的使用使得第一代高亮度的LED 的诞生,先是红色,接 着就是黄色,最后为绿色。到20世纪90年代早期,采用铟铝磷化镓生产出了桔红、橙、黄 和绿光的LED。第一个有历史意义的蓝光LED 也出现在90 年代早期,再一次利用金钢砂
—早期的半导体光源的障碍物。依当今的技术标准去衡量,它与俄国以前的黄光LED一样 光源暗淡。
90年代中期,出现了超亮度的氮化镓LED,随即又制造出能产生高强度的绿光和蓝光铟氮
镓Led。超亮度蓝光蕊片是白光LED 的核心,在这个发光蕊片上抹上荧光磷,然后荧光磷 通过吸收来自蕊片上的蓝色光源再转化为白光。就是利用这种技术制造出任何可见颜色的 光。今天在LED 市场上就能看到生产出来的新奇颜色,如浅绿色和粉红色。有科学思想的读者到现在可能会意识到LED的发展经历了一个漫长而曲折的历史过程。事实上,最近开 发的LED 不仅能发射出纯紫外光而且能发射出真实的“黑色”紫外光。那么LED 发展史到低 能走多远,不得而知。也许某天就能开发出能发X 射线的LED。早期的LED只能应用于指 示灯、早期的计算器显示屏和数码手表。而现在开始出现在超亮度的领域。将会在接下的一 段时间继续下去。
常见LED的分类
1. 按发光管发光颜色分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外, 有的发光二极管中包含二种或三种颜色的芯片。根据发光二极管出光处掺或不掺散射剂、有 色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管不适合做指示灯用。
2. 按发光管出光面特征分为圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm 的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)[6-8]。由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类:
1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为
5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。
2)标准型。通常作指示灯用,其半值角为20°~45°。
3)散射型。这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。
3. 按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。
4.按发光强度和工作电流分有普通亮度的LED(发光强度小于10mcd);超高亮度的LED(发光强度大于100mcd);把发光强度在10~100mcd间的叫高亮度发光二极管。一般LED的工作电流在十几mA至几十mA,而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。
白光LED介绍
白光LED的合成途径大体上有2条路可以走,第一条是RGB,也就是红光LED+绿光LED+蓝光 LED,LED走RGB合成白光的这种办法主要的问题是绿光的转换效率底,现在红绿蓝LED转换效率分别达到30%,10%和25%,白光流明效率可以达到60lm/w。
通过进一步提高蓝绿光LED的流明效率,则白光流明效率可达到200lm/w。由于合成白光所 要求的色温和显色指数不同,对合成白光的各色LED流明效率有不同的。随着白光LED的深入发展,人们希望用作照明光源的白光LED的光谱、色品坐标、显色性及相关色温等均能满
足国际CIE和我国的有关标准,否则应认为不合格。我们对相关色温8000 4000K白光LED 的光色特性及其与正向电流的关系进行了总结。长期以来,低色温(<4000K)、高显色性的白
光LED按照当前主流方案InGaN蓝色LED芯片和ce“激活的稀土石榴石黄色荧光体组合的方案实现难度大,成为人们攻关的难题。因为黄色荧光体的发射光谱中缺少红成份。故目前 大多数报告限于有关5000K以上的高色温白光LED的工作。
尽管白光LED已有商品,但缺少低色温白光LED。5000K以上的高色温商品,显色性差,难以满足市场,目前,由蓝色芯片和荧光体组合的低色温白光LED的报告极少。因此,无论从学术上研究,还是应用需要,发展低色温(<4000K)高显色性白光LED具有重要意义。
第二条路是LED+不同色光荧光粉:第一个方法是用紫外或紫光LED+RGB荧光粉来合成LED,这种工作原理和日光灯是类似的,但是比日光灯的性能要优越,其中紫光LED的转换系数可达80%,各色荧光粉的量子转换效率可以达到90%,还有一个办法是用蓝光LED+红绿荧光粉,蓝光LED效率60%,荧光粉效率70%;还有是蓝光LED+黄色荧光粉来构成白光。
两种途径相比较之下,RGB三色LED合成白光综合性能好,在高显色指数下,流明效率有可能高到200lm/w,要解决的主要技术难题是提高绿光LED的电光转换效率,目前只有13%左右, 同时成本高。
R、G、B三基色组成
配色、白平衡:
白色是红绿蓝三基色按亮度比例混合而成,当光线中绿色的亮度为69%,红色的亮度为21%,
蓝色的亮度为10%时,混色后人眼感觉到的是纯白色。但LED红绿蓝三色的色品坐标因工艺过程等原因无法达到全色谱的效果,而控制原色包括有偏差的原色的亮度得到白色光,称为 配色。当为全彩色LED显示屏进行配色前,为了达到最佳亮度和最低的成本,应尽量选择三 原色发光强度成大致为3:6:1比例的LED 器件组成像素。白平衡要求三种原色在相同的调配值下合成的仍旧为纯正的白色。
原色、基色:原色指能合成各种颜色的基本颜色。色光中的原色为红、绿、蓝,色度图中的三个顶点为理
想的原色波长。如果原色有偏差,则可合成颜色的区域会减小,光谱表中的三角形会缩小,从视觉角度来看,色彩不仅会有偏差,丰富程度减少,见下图。
LED 发出的红、绿、蓝光线根据其不同波长特性可大致分为紫红、纯红、橙红、橙、橙黄、黄、黄绿、纯绿、翠绿、蓝绿、纯蓝、蓝紫等,橙红、黄绿、蓝紫色较纯红、纯绿、纯蓝价 格上便宜很多。三个原色中绿色最为重要,因为绿色占据了白色中69%的亮度,且处于色彩 横向排列表的中心。因此在权衡颜色的纯度和价格两者之间的关系时,绿色是着重考虑的对象
大功率LED封装结构
随着半导体材料和封装工艺的提高,LED的光通量和出光效率逐渐提高,从而使固体光源成 为可能, 已广泛应用于交通灯、汽车照明、广告牌等特殊照明领域, 并且逐渐向普通照明领 域过渡,被公认为有望取代白炽灯、荧光灯的第四代光源。
不同应用领域对LED光源提出更高要求, 除了对LED出光效率、光色有不同的要求, 而且对出 光角度、光强分布有不同的要求。这不但需要上游芯片厂开发新半导体材料, 提高芯片制作 工艺, 设计出满足要求的芯片, 而且对下游封装厂提出更高要求, 设计出满足一定光强分 布的封装结构, 提高LED外部的光利用率。
目前封装多种多样,封装将随着今后的发展,不断改进和迎合实际需要,为LED今后在各个 领域应用奠定基础。
LED驱动技术原理
超高亮LED的特性 下图为正向压降(VF)和正向电流的(IF)关系曲线,由曲线可知,当正向电压超过某个阈值(约
2V),即通常所说的导通电压之后,可近似认为,IF与VF成正比。见表是当前主要超高亮LED的电气特性。由表可知,当前超高亮LED的最高IF可达1A,而VF通常为2~4V。
由于LED的光特性通常都描述为电流的函数,而不是电压的函数,光通量(φV)与IF的关系曲线,因此,采用恒流源驱动可以更好地控制亮度。此外,LED的正向压降变化范围比较大(最大可达1V以上),而由上图中的VF-IF曲线可知,VF的微小变化会引起较大的,IF变化,从而引起亮度的较大变化。所以,采用恒压源驱动不能保证LED亮度的一致性,并且影响LED的可靠性、寿命和光衰。因此,超高亮LED通常采用恒流源驱动。
下图是 LED的温度与光通量(φV)关系曲线,由下图可知光通量与温度成反比,85℃时的光 通量是25℃时的一半,而一40℃时光输出是25℃时的1.8倍。温度的变化对LFD的波长
也有一定的影响,因此,良好的散热是LED保持恒定亮度的保证。
PWM调光知识介绍
在手机及其他消费类电子产品中,白光LED越来越多地被使用作为显示屏的背光源。近来,许多产品设计者希望白光LED的光亮度在不同的应用场合能够作相应的变化。这就意味着,白光LED的驱动器应能够支持LED光亮度的调节功能。目前调光技术主要有三种:PWM调光、 模拟调光、以及数字调光。市场上很多驱动器都能够支持其中的一种或多种调光技术。本文 将介绍这三种调光技术的各自特点,产品设计者可以根据具体的要求选择相应的技术。
PWM Dimming (脉宽调制) 调光方式——这是一种利用简单的数字脉冲,反复开关白光 LED 驱动器的调光技术。应用者的系统只需要提供宽、窄不同的数字式脉冲,即可简单地实现改变输出电流,从而调节白光LED的亮度。PWM 调光的优点在于能够提供高质量的白光,以及应用简单,效率高!例如在手机的系统中,利用一个专用PWM接口可以简单的产生任意占空比的脉冲信号,该信号通过一个电阻,连接到驱动器的EN接口。多数厂商的驱动器都支持 PWM调光。
但是,PWM 调光有其劣势。主要反映在:PWM调光很容易使得白光LED的驱动电路产生人耳 听得见的噪声(audible noise,或者microphonic noise)。这个噪声是如何产生?通常白光LED驱动器都属于开关电源器件(buck、boost 、charge pump等),其开关频率都在1MHz左右,因此在驱动器的典型应用中是不会产生人耳听得见的噪声。但是当驱动器进行PWM调光的时候,如果PWM信号的频率正好落在200Hz到20kHz之间,白光LED驱动器周围的电感和输出电容就会产生人耳听得见的噪声。所以设计时要避免使用20kHz以下低频段。
我们都知道,一个低频的开关信号作用于普通的绕线电感(wire windingcoil),会使得电 感中的线圈之间互相产生机械振动,该机械振动的频率正好落在上述频率,电感发出的噪音 就能够被人耳听见。电感产生了一部分噪声,另一部分来自输出电容。现在越来越多的手机设计者采用陶瓷电容作为驱动器的输出电容。陶瓷电容具有压电特性,这就意味着:当一个低频电压纹波信号作用于输出电容,电容就会发出吱吱的蜂鸣声。当PWM信号为低时,白光 LED驱动器停止工作,输出电容通过白光LED和下端的电阻进行放电。因此在PWM调光时,输出电容不可避免的产生很大
的纹波。总之,为了避免 PWM调光时可听得见的噪声,白光LED驱动器应该能够提供超出人耳可听见范围的调光频率!
相对于PWM调光,如果能够改变RS的电阻值,同样能够改变流过白光LED的电流,从而变 化LED的光亮度。我们称这种技术为模拟调光。
模拟调光最大的优势是它避免了由于调光时所产生的噪声。在采用模拟调光的技术时,LED 的正向导通压降会随着LED电流的减小而降低,使得白光LED的能耗也有所降低。但是区别于PWM调光技术,在模拟调光时白光LED驱动器始终处于工作模式,并且驱动器的电能转换效率随着输出电流减小而急速下降。所以,采用模拟调光技术往往会增大整个系统的能耗。模拟调光技术还有个缺点在于发光质量。由于它直接改变白光 LED的电流,使得白光 LED 的白光质量也发生了变化!
除了PWM调光,模拟调光,目前有些产商的驱动器支持数字调光。具备数字调光技术的白光 LED驱动器会有相应的数字接口。该数字接口可以是SMB、I2C、或者是单线式数字接口。系 统设计者只要根据具体的通信协议,给驱动器一串数字信号,就可以使得白光LED的光亮发生变化。
LED散热解决方案
LED铝基板设计选择
LED线路设计为了更好的解决散热问题,LED和有些大功率IC需要用到铝基线路板。
铝基板pcb由电路层(铜箔层)、导热绝缘层和金属基层组成。电路层要求具有很大的载流能力,从而应使用较厚的铜箔,厚度一般35μm~280μm;导热绝缘层是PCB铝基板核心技 术之所在,它一般是由特种陶瓷填充的特殊的聚合物构成,热阻小,粘弹性能优良,具有抗热老化的能力,能够承受机械及热应力。IMS-H01、IMS-H02和LED-0601等高性能PCB铝基板的导热绝缘层正是使用了此种技术,使其具有极为优良的导热性能和高强度的电气绝缘性能;金属基层是铝基板的支撑构件,要求具有高导热性,一般是铝板,也可使用铜板(其中 铜板能够提供更好的导热性),适合于钻孔、冲剪及切割等常规机械加工。工艺要求有:镀金、喷锡、osp抗氧化、沉金、无铅ROHS制程等。
基材:铝基板产品特点:绝缘层薄,热阻小;无磁性 ;散热好;机械强度高产品标准厚度:
0.8、1.0、1.2、1.5、2.0、2.5、3.0mm 铜箔厚度:1.8um 35um 70um 105um 140um 特点: 具有高散热性、电磁屏蔽性,机械强度高,加工性能优良。用途: LED专用 功率混合IC(HIC)。 铝基板是承载LED及器件热传导,散热主要还是靠面积,集中导热可以选择高导热系数的板 材,比如美国贝格斯板材;慢导热或散热国产一般材料即可。价格相差较大,贝格斯板材生 产出成品大概需要4000多元平米,一般国产材料就1000多元平米。LED一般使用电压不是很高,选择1mil厚度绝缘层耐压大于2000V即可。
散热参考设计方法:为什么要进行热设计?
高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊 点脱落。
温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高 温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C; 温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会 使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致组
件失效。
热设计的目的
控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所 规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。
LED散热设计一般按流体动力学软件仿真和做基础设计。 流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种。
沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力。 局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力。
通常LED是采用散热器自然散热,散热器的设计分为三步
1:根据相关约束条件设计处轮廓图。
2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。
3:进行校核计算。
自然冷却散热器的设计方法
考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表 面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距。
自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大 的影响,所以建议散热齿表面不加波纹齿。
自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热。由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上。